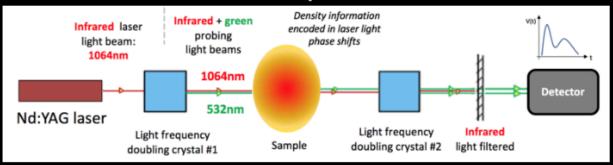
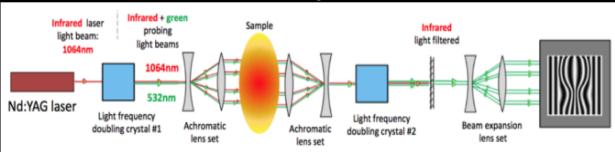


### Second-Harmonic Dispersion-Interferometer


A Second-Harmonic Dispersion-Interferometer (SHDI) is a diagnostic used to precisely measure density. The SHDI uses two co-linear beams, unlike a conventional, dual-arm interferometer and is characterized by high sensitivity, immunity to mechanical vibrations, reduced maintenance, and low cost. The SHDI is available for 1-dimensional line-of-sight measurements, and for 2-dimensional, time-resolved imaging. The SHDI's primary characteristics are as follows:

- The SHDI instrument is stable and beam re-alignment is rarely needed, since the probeand reference-beams are co-linear, suppressing common-mode noise.
- The SHDI is comprised of two compact optical units that may be mounted directly on the experiment/test chamber. Vibration isolation systems are typically not needed.
- The SHDI instrument may be used to measure large, and small sample sizes. SHDIs have been used to study object sizes 0.1- 10 mm, and in a multi-path, 12-m long instrument.
- The characteristics of the laser source (power, CW/pulsed, line width, software, etc.) are tailored to the requirements of the application, in order to keep cost low.
- The SHDI can measure line-integrated density with a high time- and phase-sensitivity,  $\Delta t \sim 1$  ns and  $\Delta \Phi \sim 10^{-3}$   $10^{-2}$  radians, as a single-chord, multi-cord, or 2D instrument.
- The SHDI's time resolution is determined by the detector system used. Bandwidth and sensitivity can be customized to accommodate specific requirements.
- As a 2-D instrument, the SHDI can provide mm<sup>2</sup> cm<sup>2</sup> mapping, and larger. The rate at which images are recorded depends on the components used and can approach 1 kHz.
- The minimum sensitivity for the SHDI depends on the details of the investigation. Large gradients, beam deflections, and fringe jumps may limit the resolution.
- User-friendly software provides for quick-image visualization and data analysis, enhancing workflow and decreasing the timescale for discovery.

General specifications for the 1-D, and 2-D instruments are listed on the next page.


### L-Egant Soluti**®**ns

#### 1-D Second-Harmonic Dispersion-Interferometer

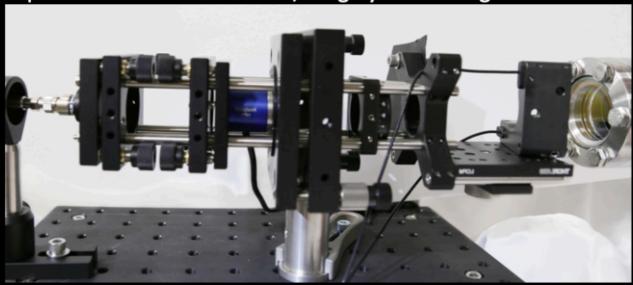


- An infrared-laser (IR) beam is (partially) converted to visible light in doubling crystal #1. The IR
  and visible beams are collinear. Beam alignment/re-alignment requirements are minimal.
- After the sample, the residual IR (primary) beam is converted in crystal #2 and then filtered.
- The sample encodes a phase difference between two visible (532 nm) beams and a fast detector measures the (interference) fringe shift.
- The 2-D instrument is similar to the above 1-D instrument, except with expanded beams, to probe a sample with a much larger cross-section, thereby providing a 2-D profile.

#### 2-D Second-Harmonic Dispersion-Interferometer



|                                         | 1D SHDI              | <u>2D-SHDI</u>     |
|-----------------------------------------|----------------------|--------------------|
| Nd: YAG laser                           | CW                   | Pulsed             |
| Time resolution (ns)                    | 200                  | 1                  |
| Spatial resolution (mm)                 | 1                    | 0.2                |
| Beam diameter (mm)                      | <1                   | >10                |
| Phase-equivalent noise (rad)            | 0.005                | 0.01               |
| Minimum line density (m <sup>-2</sup> ) | > 1x10 <sup>18</sup> | 1x10 <sup>18</sup> |
| Maximum line density (m <sup>-2</sup> ) | < 10 <sup>22</sup>   | <10 <sup>22</sup>  |


#

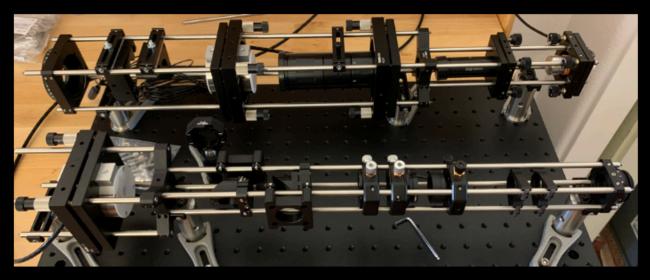
Photographic illustrations of the instrument components are provided on the next pages.

# L-Egant Soluti®ns

Two compact optical units are used in the 1D-SHDI.

Optical Unit 1 in the 1D-SHDI, roughly 20 cm long x 10 cm wide




Optical Unit 2 in the 1D-SHDI, roughly 20 cm long x 10 cm wide



## L-Egant Soluti®ns

Two compact optical units are used in the 2D-SHDI.

Optical Unit 1 in the 2D-SHDI, roughly 50 cm long x 15 cm wide



Optical Unit 2 in the 2D-SHDI, roughly 50 cm long x 15 cm wide